Anti-reflection coating for nitrogen-vacancy optical measurements in diamond
نویسندگان
چکیده
منابع مشابه
Anti-Reflection Coating for Nitrogen-Vacancy Optical Measurements in Diamond
We realize anti-reflection (AR) coatings for optical excitation and fluorescence measurements of nitrogen-vacancy (NV) color centers in bulk diamond by depositing quarter-wavelength thick silica layers on the diamond surface. These AR coatings improve NV-diamond optical measurements by reducing optical reflection at the diamond-air interface from 17% to 2%, which allows more effective NV optica...
متن کاملRaman heterodyne detected electron-nuclear-double-resonance measurements of the nitrogen-vacancy center in diamond.
We report two new applications of the Raman heterodyne detection technique. Raman heterodyne detected electron-nuclear double resonance and a double rf resonance technique are used to obtain the hyperfine structure of the nitrogen-vacancy center in diamond.
متن کاملCustom Built Atomic Force Microscope for Nitrogen-Vacancy Diamond Magnetometry
The nitrogen-vacancy (N-V) center in diamonds have the potential to be an ultra-sensitive magnetic field sensor that is capable of detecting single spins. Implementing this sensor for general and nontransparent samples is not trivial. For N-V centers to be a useful probe, a way of positioning the NV center with nanometer accuracy while simultaneously measuring its fluorescence is needed. Here, ...
متن کاملSubdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond
As a potential candidate for quantum computation and metrology, the nitrogen vacancy (NV) center in diamond presents both challenges and opportunities resulting from charge-state conversion. By utilizing different lasers for the photon-induced charge-state conversion, we achieved subdiffraction charge-state manipulation. The charge-state depletion (CSD) microscopy resolution was improved to 4.1...
متن کاملSpin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond
We map out the first excited state sublevel structure of single nitrogen-vacancy (NV) colour centres in diamond. The excited state is an orbital doublet where one branch supports an efficient cycling transition, while the other can simultaneously support fully allowed optical Raman spin-flip transitions. This is crucial for the success of many recently proposed quantum information applications ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2012
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4730401